
John Whaley, Jan Jannink CS 224G - 1/22/2026

More Context Engineering and
Data Strategy
Beyond Prompt Engineering: Architecting the Full Context Stack
for Reliable, Production-Grade AI Systems

John Whaley, Jan Jannink CS 224G - 1/22/2026

Administrative Details

● Attendance secret code! Habits Create Moats

○ https://canvas.stanford.edu/courses/221239/quizzes/184860

● Today:

○ More on Context Engineering

○ Data Strategy

https://canvas.stanford.edu/courses/221239/quizzes/184860

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

1:00–2:00

By the end of this lecture, you should be able to:

Define context engineering as the broader architecture of information supply, distinct from query phrasing.

Identify the full stack beyond the user message: system prompts, conversation history, tool definitions, and parameters.

Determine which context elements (memory, RAG, uploads, tools) are controllable by the application developer.

Construct a context strategy that balances information richness with token budget constraints.

Learning Objectives

Distinguish Context vs. Prompt Engineering

Enumerate LLM Call Components

Identify Application-Layer Levers

Design Practical Context Plans

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

2:00–5:00

The quality of LLM output depends heavily on provided context. Consider this progression:

"Is giving blood good for you?"
Generic query, zero personalization. Result: Generic WebMD-style advice.

"Does giving blood help with elevated SHBG levels?"
Specific scientific query, but stateless. Result: Theoretical answer, no specific advice.

Motivation: Prompting Is Not Enough

LEVEL 1 BAD PROMPT, BAD CONTEXT

LEVEL 2 BETTER PROMPT, BAD CONTEXT

Key Takeaway: Better Prompt + Better Context = Dramatically Better Results

"Does giving blood help with elevated SHBG levels?
[Context Attached: Historical blood panels (2023-2025), donation dates, relevant gene testing results]"

Result: Highly personalized analysis comparing specific lab values against donation timing.

LEVEL 3 BETTER PROMPT, BETTER CONTEXT TARGET STATE

John Whaley, Jan Jannink CS 224G - 1/22/2026

From a simple chat box to a compiled request.
Weʼll walk through the layers of the context stack next.

SECTION 02

What Goes Into an
LLM Call?

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

5:30–9:00

What users see as a simple text box is actually the tip of an
information iceberg. The application compiles this stack for every
single turn.

Defines identity and behavior boundaries. Often composed of model
defaults + app logic + user preferences.

The stateless model knows nothing about you. Memories, RAG docs, and
files must be injected afresh every time.

Temperature, Max Tokens, Logit Bias—these govern how the stack is
processed.

CS224G Insight: Your application logic determines 90% of what the model
"knows" before it generates a single token.

The Context Engineering Model

The "Simple Chat" Illusion

1 System & Persona Layer

2 Injected State The "Meat")

3 Parameters Invisible)

THE COMPILED REQUEST

System Instructions

Model system prompt "You are GPT-4..."

Product system prompt

Personas / Custom Instructions "Be clear..."

Tooling Layer

Available tools [searchWeb, sendEmail]

Tool definitions JSON Schemas

Recent tool outputs searchWeb_1 returned...

Injected Knowledge State

Long-term memory "User is named John..."

Retrieved data RAG Relevant docs chunks

User-submitted data File uploads

Conversation History

User: "What types of stores..."

Assistant: "Hardware stores..."

User New Prompt): "What are the hours..."

"User is using <appname>..."

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

9:00–14:00

Hidden Control Levers

Temperature
Controls randomness/creativity. Low temp 0.0 = deterministic; High temp
1.0 = more creative but less stable.

Max Tokens
Hard limit on generation length. Does not limit input size, only output.
Crucial for cost control and latency.

Logit Bias
Surgical precision tool. Force the model to avoid or favor specific tokens
(words). Often used for classification consistency.

The Token Budget Economy

1 Token ≈ 0.75 Words

Models see tokens, not words. Context limits are strict hard stops.

The Compression Trade-off
Frontends must summarize history or truncate older messages. You gain
space but lose fidelity.

The "Lost in the Middle" Phenomenon
Performance degrades as context fills up. Key instructions buried in the
middle of a 100k+ token window are often ignored.

Call Parameters & The Context Window

0.0 - 2.0

Integer

Map<Token, Float>

The "Rule of Thumb"

When the Context Window Fills Up:

1,000 tokens ≈ 750 words)

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

14:00–18:00

The Three Strata of Instructions

The baseline identity baked in by the provider OpenAI, Anthropic).

Your application's specific framing. Defines the tool's role in your product.

User-defined preferences layered on top.

Engineering Implications

Most frontends bury this setting, but for power users and
complex apps, allowing users to define global invariants is
crucial.

Instead of repeating "format as markdown" in every prompt, bake
it into the persona layer once. This reduces prompt noise and
improves compliance.

Sandwiching
Place critical instructions at both the start System and end User of the
context window to combat "lost in the middle."

Separation of Concerns
Keep security guardrails in the Product Prompt Layer 2) so users cannot
easily override them in Layer 3.

System Prompts & Instruction Layers

1. Model System Prompt Immutable

"You are GPT-4, a helpful assistant developed by OpenAI..."

2. Product System Prompt Dev Control

"The user is using {AppName} to analyze financial data..."

3. Personas / Custom Instructions User Control

"Be concise. Answer in JSON. Prefer python for math."

The Underrated Lever: Personas

Best Practices for System Prompts:

John Whaley, Jan Jannink CS 224G - 1/22/2026

Where most people think "context" lives:
Memories, Retrieval, and Uploads.

SECTION 03

Injected
Knowledge

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

18:30–22:00

Crucial Mental Model: The LLM is a stateless "brain-in-a-jar." It does not remember anything.
Memory is a function of the application layer, not the model layer.

Long-term state preserved about the user across sessions.
e.g., "User is named John, lives in CA, teaches at Stanford, prefers concise code."

Data fetched from connected datastores before the call. The model doesn't "search"; the infrastructure searches and injects.

Ad-hoc files or "project" attachments.e.g., "Analyze this PDF."

Architecture Example
Customer Support Agent: App searches internal KB for query topic → Retrieves top 3 articles → Injects text into context → Model generates
response.

Injected Knowledge

1. Preserved Memories

2. Retrieved Data RAG

3. User-Submitted Data

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

22:00–28:00

Tools aren't magic. They are standard functions API calls,
scripts) wrapped in a schema the LLM can "read."

The LLM does not execute code or search the web. It emits
tokens indicating intent. The orchestrator (your app) does the
actual work.

Orchestrator runs tool → Output becomes new context →
Feed back to LLM  Repeat until done.

Tools, Orchestrators & Agentic Loops

Tools are Programmable Context

The "Brain-in-a-Jar" Reality

AGENTIC
WORKFLOW

The Loop

THE EXECUTION FLOW User Prompt
Input + Attachments

3. Orchestrator

Your App

Memories
about you

Orchestrator
Decides: "Call Tool?"

Database

Query memories

Send them back

RAG results

Retrieval query

System
prompt

Creates prompt
and context

Tools Params
Injected
context

Prompt +
history

Executes tool call

Returns
results

Dispatches LLM call
with all context

Claude Sonnet 4.5, OpenAI o3, Grok 4,Gemini 2.5 Pro, …

Returns
results

or
emits tool call tokens

Sends

back

response

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

28:00–33:00

While much of the LLM stack feels opaque
(model weights, training data), these five
specific levers are directly in your control
as an application builder.

Builder's Tip

"Don't just tweak the prompt. Engineer the
inputs that surround it."

Define global invariants here (e.g., "Always return JSON"). Don't waste tokens
repeating this in every prompt.

Curate your toolkit. Giving a model 50 tools confuses it. Give it the 5 it actually needs
for the task.

You control the search quality. Which databases are connected? How are chunks
retrieved? This is a huge performance lever.

Encourage file uploads. Explicit context ("Read this PDF") beats implicit retrieval
every time.

Still matters! But treat it as the final instruction, not the entire context payload.

What You Can Control

The Context
Engineering Checklist

1. Personas / Custom Instructions

2. Available Tools

3. RAG / Datastore Connections

4. User-Submitted Data

5. Your Prompt

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

33:00–37:00

Discuss

4 Minutes

Share with class

In-Class Discussion

FORMAT

EXERCISE

The Token Budget Crisis
Your long-running agent chat is hitting the 128k context limit.
Performance is degrading.
What is your eviction policy?

1 Compression vs. Eviction
Do you summarize history (lossy compression) or drop oldest turns
(eviction)? Why?

2 The "Important" Bits
What specific pieces of context must be pinned and never dropped? (e.g.
system instructions, tool definitions)

3 Re-retrieval Strategy
If you drop a file from context, how does the model get it back if needed
later?

John Whaley, Jan Jannink CS 224G - 1/22/2026

CS224G Lecture 5

38:00–42:00

"Think of the LLMs as a new, genius
Ph.D.-level team member... but one for
whom it is always their first day at work."

Andy Bromberg

Context Engineering Recap

1 Context Engineering > Prompt Engineering
The prompt is just the tip of the spear. The surrounding context (injected knowledge,
history, system instructions) often determines performance more than the phrasing of the
question.

2 Context is a Compiled Artifact
Don't think of it as "chatting." Think of it as your application compiling a massive text file
(history + RAG + tools + system prompts) on every single turn.

3 State Lives in the App, Not the Model
The LLM is a stateless brain-in-a-jar. All "memory" (user preferences, project files, past
turns) is retrieved and injected by your infrastructure.

4 Master the Five Levers
You have control over: Personas, Tools, RAG, Uploads, and the Prompt. Use all five, not just
the last one.

Building an Effective
Data Strategy via UX

• Introduction to Data Strategy and UX

• Data as a Strategic Asset

• Product Engagement: The Core of Success

• Enhancing Feedback Loops in Product Usage

• Leveraging LLMs for Better Feedback

• The Role of Internal Tools

• The Importance of Small Details

• Data Quality: Not All Users Are Equal

• Addressing Bias and Diversity in Data

• Challenges and Call to Action

• Acknowledgements and Closing

Agenda

The winners in this era of AI will be the organizations with ongoing access to
highly-relevant, differentiated, quality data. In a world where all public data will
be ingested and used, unique data is the most important strategic asset.

Data strategy is the true
competitive edge in the
AI era.

Introduction

Data's Strategic Value

AI Strategy

The winners in AI will prioritize building effective data feedback loops. A
static data set is not nearly as useful as ongoing access to data.

Data Is Not Oil: Differentiation Is Important

Data's worth lies in differentiation and targeting, not as a commodity.
Effective and sustainable AI requires unique, high-quality data.

Understand Where To Use Data

Good data is not only for machine learning training. It enables you to
offer personalized experiences and make data-driven decisions.

 Data
46:00–48:00

A strong data strategy starts with product and user engagement.

Product Engagement User Engagement Data Insights

Implement strategies to capture

high-quality data from engaged

users. Great engagement drives

retention and data insights.

Emphasize the importance of

user engagement in building a

strong data strategy.

Longitudinal data reflects

sustained user engagement.

Highlight the correlation

between user engagement,

retention, and effective data

strategies. Encourage actions

that promote user engagement.

 Strategy
48:00–51:00

Making feedback effortless is essential.

Make It Inherent Integration of Tools Instant User Gratification

Capture feedback seamlessly
during product usage to
enhance data collection without
disrupting user experience.

Integrate editing and
collaboration tools directly into
the product for both user
convenience as well as data
feedback.

Provide instant gratification for
user corrections to enhance
engagement.

 Feedback
51:00–54:00

User Feedback Techniques
The user provides labels (A is good, B

is bad, C is neither) to assess products

or features.

Ask for discreet feedback to simplify

data collection and gauge overall

satisfaction (good/bad).

Label Feedback

Discreet
Feedback

Feedback
Explanations

Prompt users to explain the reasons

behind their ratings or labels to

uncover insights.

Encourage users to provide detailed

qualitative feedback to understand

their experiences and pain points.

Observe user behavior passively to

gather data on how they interact with

the product or platform.

Qualitative
Feedback

Passive Learning

AI Learning
Overrides

Allow users to override AI-generated

feedback, and learn from these

changes to improve personalization.

Feedback
54:00–58:00

Using LLMs to Enhance Feedback Quality

● LLMs allow for natural follow-up questions and to capture
feedback subtleties.

● Improve understanding of not just the what, but the why.

● Integrate natural language for an enhanced user feedback
loop.

● Efficiently summarize and extract key points from large
unstructured textual data.

 LLMs

“Product” Includes Internal Tools

Internal tools, like those for data labeling and cleaning, are
essential for maintaining high data quality in AI.

It is usually worth the investment, as empowering your
employees, data labelers, and data reviewers has a
multiplying effect.

For instance, at Redcoat AI, we devoted equal effort to our
internal data labeling tool as our external product.

Tools
61:00–63:00

The Impact of
Attention to
Detail

Small Details Matter

Examples like spell-check and Grammarly demonstrate how small
details can make a big difference in user experience.

Gamification Elements

Incorporating gamification elements can make the feedback process
more enjoyable for users and encourage their participation.

Immediate Feedback

Offering immediate feedback satisfaction, like allowing users to
correct data in real-time, enhances engagement and data accuracy.

 Details
63:00–65:00

Data Quality: Not All Users Are Equal

Factors Affecting Data Quality

Prioritize Data Value Through Validation And Diversification

• Data from experts is more valuable than data from novices.

• Data from consistent users is more valuable than data from inconsistent
ones.

• Longitudinal data is valuable, as it is hard to get and essential to
understand long-term value and retention.

• Use metadata and cross-validation to identify the most valuable users.

• Prioritize contributions from experts and consistent users.

• Prioritize data quality and diversity over sheer data quantity.

 Data

Dangers from Lack of Diversity and Representation in Data

Importance of Diverse Data Sets

• Example at UnifyID: 95% of beta users were male techies from the Bay
Area. So it didn’t work for middle-aged women in Korea.

• Know your data and users to detect and address potential biases.

• Understand the inherent bias in generative AI tools and models.

• Creating diverse data sets is vital for quality and representation.

• Diversity in data boosts innovation, minimizes biases, and fosters
inclusivity.

• Be creative about how to get data from a more diverse, representative
set of users.

• Building a diverse data set is hard! But doing hard things creates
differentiation and value.

 Diversity

Managing Bias and Diversity in Data
68:00–72:00

Calls To Action

We can do better than conversational chatbots.

Encourage user engagement with proactive interfaces. Foster a sense of interactivity to
enhance the user experience.

Let’s not recreate Clippy. Embrace creativity!

Embrace creativity and a user-centric design approach to deliver unique and impactful user
experiences.

Consider data strategy as you design and build your products.

Think about how you can incorporate data strategy into products. Evaluate UX ideas based
on the value of the data they will generate.

 Audience Challenge

AI agents can be more interactive.

The best humans know when and what questions to ask. AI agents should do the same.

72:00–75:00

